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Abstract: Ultraviolet irradiation (X 254 nm) of Mo2(SO4J4
4- in 5 M H2SO4 produces H2 and the one-electron oxidation prod­

uct Mo2(SO4J4
3-. The disappearance quantum yield of Mo2(SO4J4

4- is 0.17 at 254 nm. The spectrum of K3Mo2(SO4J4-
3.5H2O exhibits an absorption band at 1405 nm (e 143); this band shows a vibrational progression in a 350-cm-1 fundamental 
even in 5 M D2SO4 solution at room temperature. At 15 K additional vibronic structure is resolved. This band is assigned to 
the N - • E type transition S -» 6* (2B2g —

 2B lu). 

It has been shown previously that ultraviolet irradiation 
of aqueous acidic solutions containing one-electron reductants 
such as Fe2 + yield hydrogen.2 We are presently exploring the 
photoredox behavior of low-valent molybdenum complexes 
containing strong metal-metal bonds, and in particular are 
directing our attention to systems that are capable of reducing 
hydronium ions. Herein we report the results of an investiga­
tion of the photoreactivity of Mo2(SO4J4

4- in aqueous sulfuric 
acid. The near infrared spectrum of K3Mo2(SO4J40.5H2O at 
15 K has also been studied. 

Experimental Section 

The compounds K4Mo2(SO4J4
3'4 and K3Mo2(S04)4-3.5H20

5 were 
prepared according to standard procedures. All manipulations with 
the molybdenum complexes were conducted under nitrogen or in 
degassed solution. For the irradiations, the appropriate solution was 
placed in a special vacuum-tight, 1-cm quartz spectrophotometer cell 
and degassed through three freeze-pump-thaw cycles. Low-pressure 
Hg lamps were used for the 254-nm irradiations. The electronic ab­
sorption spectra of the reaction solutions were monitored using a Cary 
17 spectrophotometer. Quantum yields at 254 nm were determined 
using ferrioxalate actinometry such that the sample absorbed 5.77 
X IO-7 einsteins/min. Mass spectral analyses of the gas above the 
irradiated solutions were obtained with an AEI-MS-902 high-reso­
lution mass spectrometer. The low-temperature near IR spectrum of 
K3Mo2(S04)4-3.5H20 was obtained by positioning a sample in a Cary 
liquid helium Dewar. X-ray photoelectron spectra were obtained with 
a HP5950A spectrometer from powdered samples on double-stick 
tape. 

Evolution of H2 was measured for exhaustively photolyzed samples 
of Mo2(SO4J4

4- in vacuum-tight 1-cm spectrophotometer cells 
equipped with a glass side chamber and needle valve. The amount of 
evolved H2 was determined by Toepler pumping the stirred photolyzed 
solution through three liquid nitrogen traps into a calibrated volume 
and manometrically measuring the pressure. To ensure that only H2 
was collected, the gas was then passed over hot copper oxide, yielding 
water that was condensed in a liquid nitrogen trap, leaving no de­
tectable gas. 

Photochemistry of Mo2(SO4J4
4-

Irradiation (254 nm) of Mo2(SO4J4
4- in 5 M D2SO4 results 

in the spectral changes shown in Figure 1. As irradiation pro­
ceeds, small gas bubbles are formed. The band at 515 nm (e 
—̂l 70) characteristic3'4 of Mo2(SO4J4

4- decreases in intensity, 
whereas a structured absorption system diagnostic (vide infra) 
of Mo 2(SO 4J 4

3 - grows in at 1200-1600 nm (emax of 143). 

Isosbestic points are initially maintained at 578 and 420 nm 
and shoulders develop at 570 and 405 nm. A quantum yield of 
0.17 was obtained for disappearance of Mo2(SO4J4

4 - . 
Mass spectral analysis of the gas formed by irradiating 

Mo 2(SO 4J 4
4 - in 5 M H2SO4 solution confirmed that H2 was 

produced. Thus the principal photoreaction must correspond 
to 

H+(aq) + Mo2(SO4J4
4 

254 nm 
V2H2 + Mo 2 (SO 4 )V - (1) 

An exhaustively photolyzed solution yielded 0.31 mol of 
H2 /mol of K4Mo2(S04)4 . The fact that this is less than the 
theoretical amount of H2 (0.5 mol) is not unexpected, as 
isosbestic points are not maintained (Figure 1); that is, the 
reaction observed upon 254-nm irradiation is not stoichiometric 
at high conversion.6 

Near Infrared Spectrum of Mo2(SO4J4
3-

We have found that Mo2(SO4J4
3 - exhibits a previously 

unreported5 absorption band in the near IR at 1405 nm (emax 

143 for a 5 M D2SO4 solution). Remarkably, a vibrational 
progression with a spacing of 350 cm - 1 attributable to a )g 

(MoMo) was observed even in solution at room temperature. 
In contrast, the lowest energy electronic absorption band of 
K4Mo2(S04)4 , which occurs at 519 nm (« 170), has been 
shown7 to be due to the transition 5 —- 5* ( 'A ) g -*• 1 A 2 J . There 
are two plausible explanations for the near IR band of 
K3Mo2(SO4J4O-SH2O. As the compound is formally of mixed 
valence, the transition could be assigned intervalence charge 
transfer in the weak interaction description.8'9 Alternatively, 
the transition could be viewed as the N — E type1 ° transition 
5 —• 5* (2B2g —* 2Biu). The former description seems inap­
propriate for several reasons. Firstly, the MoMo bond lengths" 
and stretching frequencies12 are approximately equal in 
K4Mo2(SO4J4 and K 3 Mo 2 (S0 4 ) 4 0.5H 2 0. Therefore, the 
5-bonding model applicable to K 4Mo 2 (S0 4 ) 4 would be ex­
pected to obtain for K 3 Mo 2 (S0 4 ) 4 OH 2 0 as well. EPR mea­
surements for K 3 Mo 2 (S0 4 ) 4 0 .5H 2 0 suggest that the odd 
electron occupies a 5 orbital delocalized over both metal cen­
ters.13 We also have examined the x-ray photoelectron spec­
trum of K3Mo2(SO4J40.5H2O and have found no splitting of 
the Mo 3pi/2 signal. One final point, and most convincing, is 
the fact that the 1405-nm band in the spectrum of 
K 3Mo 2(SO 4J 4O^H 2O shows sharp vibronic structure at 15 

Journal of the American Chemical Society / 99:11 / May 25, 1977 



3621 

Figure 1. Electronic absorption spectral changes during 254-nm irradiation of K.4Mo2(S04)4 in 5 M D2SO4 solution. 

Figure 2. Electronic absorption spectrum of KjMo2(SC>4)4-3.5H20 in 
a KBr pellet at 15 K. 

Table I. Vibronic Structure of the Near IR Band in the Spectrum of 
K3Mo2(S04)4-3.5H20 in a KBr Pellet at 15 K 

nm 

1583.7 
1575.6 
1558.2 
1520.0 
1500.3 
1492.3 
1482.4 
1475.9 
1442.9 
1425.0 
1417.3 
1406.7 
1402.3 
1374.0 
1357.2 
1339.0 
1312.9 
1296.2 

cm"1 

6314 
6347 
6418 
6579 
6665 
6701 
6746 
6776 
6930 
7018 
7055 
7109 
7131 
7278 
7368 
7468 
7616 
7715 
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350 
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354 

354 
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355 
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351 

348 

E 

363 

_359 

K (Figure 2, Table I). An intervalence charge transfer band, 
because the transition is a multiphonon excitation,9-14 would 
not be expected to exhibit well resolved molecular vibronic 
structure. Both the vibrational progression in quanta of 350 
cm"1 and the Franck-Condon factor of about 1.5 are more 
consistent with the <5 ->• 5* assignment. 

The vibrational structure of the 1405-nm band in the spec­
trum of K3Mo2(S04)4-3.5H20 is assigned as follows: There 
are five (A-E, Figure 2, Table I) origins for progressions in 
aig(MoMo). Conspicuous is the presence of the two major 

components A and C with slightly different Franck-Condon 
factors. The progression that begins at C has a slightly higher 
progressional frequency than that beginning at A. These split 
components are interpreted to result from the 5 —- 8* transition 
of two crystallographically nonequivalent11 Mo2(SO4),*

3- ions 
in the unit cell. Previously, it has been noted12 that this non-
equivalence results in slightly different ground-state values of 
aig(MoMo) (373 and 386 cm -1). The two weak peaks, B and 
E, might possibly represent transitions involving quanta of aig 
modes built on A and C, respectively. Alternatively, these weak 
peaks could result from Davydov splitting of the pure origins 
(A and C). The other weak peak, D, may be attributed to a 
transition involving a quantum of an aig mode built on either 
A or C. It is apparent, however, that definitive assignments of 
the three weak peaks cannot be made with the limited data 
available. 
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